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United States Energy Flow

Estimated U.S. Energy Use in 2014: ~98.3 Quads . Iﬂaagggfiké\ae,-%?;e
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Source: LLNL 2015. Data is based on DOE/EIA-0035(2015-03), March, 2014. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory
and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports
consumption of renewable resources (i.e,, hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." The efficiency of electricity production
is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential and commercial sectors 80%
for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527
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Terrestrial Industrial Process Waste Heat Recovery

» System Solutions Needed to Recover Energy Throughout the Industrial Processing
Complex
» Produce Power
» Residential & Commercial Space Heating
» Radiant Collectors, Rankine cycles, Stirling cycles, & Thermoelectric Conversion
» High-Temperature TE & Structural Materials and Systems; High Temperature Thermal Energy Storage

» Steel Industry
» Electric Arc & Blast Furnaces, Steel Slabs, Slag By-Products
» 10’s of Megawatts of Thermal Energy Available in Each Potential Location in Steel Processing
» Process Temperatures Available: 200-1000°C
» 13 GW Total Potential Power Production in U.S. Alone

» Various Other Industrial Processes
» Glass Furnaces, Aluminum Processes, Petro-chemical All Have Common Requirements
» Process Temperatures Available: 760 — 1400°C
» Another >39 GW Potential Power Production in These Industries in U.S.
» Large International Interest in WHR Systems www.dpp-Europe.com
» Latest International Conferences on Thermoelectrics 2016, Wuhan, China & 2015, Dresden, Germany
» Energy Harvesting - 2014 U.S. Emerging Technology Conference & Exhibition, Santa Clara, CA
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Terrestrial Waste Energy Recovery

» Thermoelectric Systems Considered a Prime Energy Recovery Technology Candidate /
Option in Many Terrestrial Applications

» Terrestrial Energy Recovery Goals are Often Tied to:
» Energy Savings
» Environmental Savings and Impacts
» Maximizing Conversion Efficiency
» Maximum Power Output

» However, JPL is Currently Working on System Designs Where the Critical Design
Metric 1s Maximizing Specific Power (W/kg)

» Knowing Its Relationship to Maximum Power or Efficiency Points is Key
> Texh = 823 K, Tamb =273 K

» System Analysis Shows This Design Metric Requires High Power Flux and High Heat
Flux TE Modules

» Cost-Effectiveness and Performance Are Constant Requirements

Jet Propulsion Laboratory
J pL California Institute of Technology



TE System Design Regime Results
T =823 K, T,,q=273-323 K
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Relating System-Level Metrics to Module Metrics

 Module level and TE element level
information are readily quantified and
interrelated
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/4 Module CAD Description

» SolidWorks CAD Modeling

« SolidWorks CAD Information Transferred into Several FEA Environments
 Electrical/Thermal/Thermoelectric Analyses
« Structural Stress/Thermal Expansion Analyses

Cold Side

28 Couple Module

Series/Parallel Connection

Critical Interface Layers Designed In
« Couple Electrical Isolation

» Material Diffusion Layer
« Bonding Metallization Layer

JPL



/2 Module FEA — High Resolution FEA Guiding Design

B: Thermal-Electric

mam Exploded View

* Aerogel Incorporated in the
Design.

* Bonded Contacts.
* Mesh Statistics, Nodes:27292,
Elements: 46.39

* \Voltage Distribution
Red: Voc
/ Blue: Ground

* Temperature Distribution
Thuot ~ 700 K

/ TCO|d ~ 290 K
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Quarter Module [Bonding Process Development NAS;
(All Skutterudite Module) |

Surface etching of T.E. elements for
Bonding of T.E. elements onto hot side cold side bonding

Metallic
coating of
: module &
Bl miE ; ————— T T e [T - | stencil

Removal of stencil frame via laser cutting Cold side bonding of metal stencil

Application of bonding paste

HEEIEE BIBIEAREE
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MIMIIEIIIEIEE
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Big Success!
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Module Fabrication Demonstrated & Module
Completed for Testing

* Module after the aerogel process (removed excess aerogel)
* Module Aerogel process refined

* TE module generally looked very good and as expected

« Fabrication process now set for this module design

* TE module went to testing:
— Voc
— I-V curve
— Thermal interfaces

~1.35cm

J pL Jet Propulsion Laboratory

California Institute of Technology



s TE Module Technical Challenges

O Temperature Drops Across Hot and Cold Side Interfaces.
O Average Electrical Contact Resistance Between Components.

Temperature Drop 2

_— e —— e e e
Temperature Drop 1

Analytic Approach

O Temperature Drops due to Interface Thermal Resistance are Estimated Based on Measured
Value of Open Circuit Voltage (Voc) and Measured T, 4. (Verified via testing)

O Hence, Tyqis Kept Constant and Ty is varied until Calculated V,. matches Measured Value.

O Average Electrical Contact Resistance Between Components is Subsequently Calculated
Based on Measured I-V curve.

JPL



TE Module Testing
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Resistance measurements for quarter module 6
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V1.16 (total) 41.65 44.17 0.43
» Current leads were attached to nodes 1 and 16 and an V1.9 (half 19.88 21.08 4.13
AC current of 0.943 A was applied to the module V916 (hatf) 20.67 21.92 0.32
- Voltages were then measured between nodes (e.g 2—3, x“ i(ﬁ iﬁg égg
2-3 . . .
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Vis.16 3.07 3.26 3.68
JPL Va6 srera 41.41 43.91 0.15
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Quarter TEC Module Life Testing Loading Process

Test system operational

Expected measurements Hot- & Cold-Side Temperatures
— Voltages & Currents (I-V Curve)
— Power Output
— Electrical Resistance

Currently optimizing the test system and test fixture to provide consistent test results
Similar to many other test fixtures @ JPL TEC Group
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Images of module and thermocouple placement inside test fixture

« Temperature sensor locations were critical to establish internal AT's
« Aerogel insulation around TE elements quite apparent
« Aerogel is certainly a key design feature

JPL
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TE Module Testing

* Latest TE module test data looking better than ever

e Full I-V curve with comparison to model predicts

* Module measured resistance via I-V curve = 64.1 -
mQ) at temperature - Good compared to expected
60 mQ

* Power output was 11.5 W at T}, ~425°C and T, ~

35°C

« Best Ever for JPL All-SKD TE Module Module Mounted in Test System

* Power flux > 2.1 W/cm? (Module Footprint Area) Module #6 Test Performance

100 — T 7T T 7T T [ T | Lt - 12000

. Power flux ~5.1 W/cm? (TE Element Area) 1600.00 2:;;:::::;:;;..“ 1 L T
* Hot-side thermal input is approximately 120 W 140000 | L 10000
* Hot-side thermal resistances have now been s *** 8000 s

analyzed with the aid of specific testing for hot-sjde« e N :
AT ’ S = 800.00 il Measured V(1) &

e
J: A Calculated V(I) 5.9 uOhm-cm*2
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*  Working to get T, lower now and lower thermal

contact resistances at hot- and cold-sides. 0000 S Linear (Measured V()
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* Even exposed to some thermal cycling — Internal
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42 Module |-V and Power Curves

Module #6 Test Performance
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« Excellent Agreement Between Experimental Data and Model Predictions
 Electrical Contact Resistance Between Components ~ 5.9 mOhm-cm? - This is quite

JPL reasonable



Summary & Conclusions

* High power density all-skutterudite TE modules under development and
demonstration at JPL

* Module requirement driven from high specific power system-level requirement in
current terrestrial application

» Requirements for TE module design driven by efficiency-power-specific power-
heat flux map

* High power density all-skutterudite modules showing excellent power density
» Power flux > 2.1 W/ecm? (Module Footprint Area)

* Power flux ~5.1 W/cm? (TE Element Area)
e T, ~425°Cand T, ~35°C
* Highest Power — Highest Power Flux All-SKD TE Module ever at JPL

Excellent agreement between experimental data and model predictions

Module fabrication and testing on-going to improve performance even further

Next Step is high power density segmented TE modules

JPL 1



Skutterudite TE Module Technology

 Skutterudite TE modules have been developed and demonstrated now

— Demonstrated on U.S. DOE Waste Heat Recovery & Utilization Program - Automotive
applications with Ty, ~ 500°C

— Now Demonstrated in High-Power-Density designs applicable to terrestrial power generation
with Ty, ~450-500°C
— Industrial Processing energy recovery
— Aircraft energy recovery
— Oil and Gas system energy recovery
— They are robust, high performance, capable of handling thermal cycling
— Interface designs are being refined and optimized

 Skutterudite TE module technology also being extended to higher temperature
(T, ~ 600°C) spacecraft power applications

— Potential eMMRTG spacecraft power systems to Mars, Ocean Worlds, Icy Moons, and
outer regions of our solar system (Saturn, Uranus, Neptune, and beyond)

— Interface designs are being refined and optimized

Skutterudite TE modules are here
They are now being refined for different applications

Jet Propulsion Laboratory
J pL California Institute of Technology
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